Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.363
Filter
1.
Cardiovasc Diabetol ; 23(1): 154, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702735

ABSTRACT

BACKGROUND: Insulin resistance (IR) plays an important role in the pathophysiology of cardiovascular disease. Recent studies have shown that diabetes mellitus and impaired lipid metabolism are associated with the severity and prognosis of idiopathic pulmonary arterial hypertension (IPAH). However, the relationship between IR and pulmonary hypertension is poorly understood. This study explored the association between four IR indices and IPAH using data from a multicenter cohort. METHODS: A total of 602 consecutive participants with IPAH were included in this study between January 2015 and December 2022. The metabolic score for IR (METS-IR), triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, triglyceride and glucose (TyG) index, and triglyceride-glucose-body mass index (TyG-BMI) were used to quantify IR levels in patients with IPAH. The correlation between non-insulin-based IR indices and long-term adverse outcomes was determined using multivariate Cox regression models and restricted cubic splines. RESULTS: During a mean of 3.6 years' follow-up, 214 participants experienced all-cause death or worsening condition. Compared with in low to intermediate-low risk patients, the TG/HDL-C ratio (2.9 ± 1.7 vs. 3.3 ± 2.1, P = 0.003) and METS-IR (34.5 ± 6.7 vs. 36.4 ± 7.5, P < 0.001) were significantly increased in high to intermediate-high risk patients. IR indices correlated with well-validated variables that reflected the severity of IPAH, such as the cardiac index and stroke volume index. Multivariate Cox regression analyses indicated that the TyG-BMI index (hazard ratio [HR] 1.179, 95% confidence interval [CI] 1.020, 1.363 per 1.0-standard deviation [SD] increment, P = 0.026) and METS-IR (HR 1.169, 95% CI 1.016, 1.345 per 1.0-SD increment, P = 0.030) independently predicted adverse outcomes. Addition of the TG/HDL-C ratio and METS-IR significantly improved the reclassification and discrimination ability beyond the European Society of Cardiology (ESC) risk score. CONCLUSIONS: IR is associated with the severity and long-term prognosis of IPAH. TyG-BMI and METS-IR can independently predict clinical worsening events, while METS-IR also provide incremental predictive performance beyond the ESC risk stratification.


Subject(s)
Biomarkers , Blood Glucose , Insulin Resistance , Severity of Illness Index , Triglycerides , Humans , Male , Female , Middle Aged , Risk Assessment , Risk Factors , Biomarkers/blood , Prognosis , Adult , Blood Glucose/metabolism , Time Factors , Triglycerides/blood , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/mortality , China/epidemiology , Disease Progression , Retrospective Studies , Cholesterol, HDL/blood
2.
Int Immunopharmacol ; 134: 112183, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705031

ABSTRACT

Psoriasis is a chronic inflammatory skin disease substantially affecting the quality of life, with no complete cure owing to its complex pathogenesis. Cornuside, a major bioactive compound present in Cornus officinalis Sieb. et Zucc., which is a well-known traditional Chinese medicine with a variety of biological and pharmacological activities, such as anti-apoptotic, antioxidant, and anti-inflammatory properties. However, its effects on psoriasis remain unclear. Our preliminary analysis of network pharmacology showed that cornuside may be involved in psoriasis by regulating the inflammatory response and IL-17 signaling pathway. Thus, we investigated the protective role and mechanism of cornuside in the pathogenesis of psoriasis in an imiquimod (IMQ)-induced psoriasis mouse model. In-vivo experiments demonstrated that cornuside-treated mice had reduced skin erythema, scales, thickness, and inflammatory infiltration. The Psoriasis Area Severity Index score was significantly lower than that of the IMQ group. Flow cytometry analysis indicated that cornuside effectively inhibited Th1- and Th17-cell infiltration and promoted aggregation of Th2 cells in skin tissues. Cornuside also inhibited the infiltration of macrophages to the skin. Furthermore, in-vitro experiments indicated that cornuside also decreased the polarization of M1 macrophages and reduced the levels of associated cytokines. Western blotting demonstrated that cornuside suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular receptor kinase (ERK) in bone marrow-derived macrophages. Our findings indicate that cornuside has a protective effect against IMQ-induced psoriasis by inhibiting M1 macrophage polarization through the ERK and JNK signaling pathways and modulating the infiltration of immune cells as well as the expression of inflammatory factors.

3.
Sci Total Environ ; 931: 172898, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697543

ABSTRACT

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.

4.
Biosens Bioelectron ; 258: 116344, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38696967

ABSTRACT

Autophagy is an essential degradative process that governs the renewal of organelle and maintains the homeostasis of cellular microenvironment. Its dysregulation has been demonstrated to be an indicator for neuroinflammation. To elucidate the interrelationship between neuroinflammation and autophagy, optical probes are ideal tools as they offer a number of advantages such as high spatiotemporal resolution and non-invasive sensing, which help to visualize the physiological and pathological functions of interested analytes. However, single autophagy parameter-response probes may generate false-positive results since they cannot distinguish between neuroinflammation and other autophagic stimuli. In contrast, chemosensors that respond to two (or more) targets can improve selectivity by qualifying response conditions. Herein, a "dual-key-and-lock" strategy was applied to construct probe (Vis-NO) to selectively recognize autophagy under inflammation out of other stimuli. The red fluorescence of Vis-NO was lit up only in the simultaneously presence of high viscosity and nitric oxide (NO) in lysosome. Due to the characteristics of high viscosity and overexpressed NO within lysosomes, Vis-NO could be used to selectively identify autophagy during neuroinflammation, providing expanding insights into the interrelationship between autophagy, neuroinflammation and stroke in pathology, and informing about the mechanisms through which autophagy regulates inflammation.

5.
Anal Chem ; 96(15): 6079-6088, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563576

ABSTRACT

Metal ion homeostasis is imperative for normal functioning of the brain. Considering the close association between brain metal ions and various pathological processes in brain diseases, it becomes essential to track their dynamics in awake animals for accurate physiological insights. Although ion-selective microelectrodes (ISMEs) have demonstrated great advantage in recording ion signals in awake animals, their intrinsic potential drift impairs their accuracy in long-term in vivo analysis. This study addresses the challenge by integrating ISMEs with photoelectrochemical (PEC) sensing, presenting an excitation-detection separated PEC platform based on potential regulation of ISMEs. A flexible indium tin oxide (Flex-ITO) electrode, modified with MoS2 nanosheets and Au NPs, serves as the photoelectrode and is integrated with a micro-LED. The integrated photoelectrode is placed on the rat skull to remain unaffected by animal activity. The potential of ISME dependent on the concentration of target K+ serves as the modulator of the photocurrent signal of the photoelectrode. The proposed design allows deep brain detection while minimizing interference with neurons, thus enabling real-time monitoring of neurochemical signals in awake animals. It successfully monitors changes in extracellular K+ levels in the rat brain after exposure to PM2.5, presenting a valuable analytical tool for understanding the impact of environmental factors on the nervous system.


Subject(s)
Biosensing Techniques , Wakefulness , Animals , Rats , Brain , Microelectrodes , Electrochemical Techniques
6.
Heliyon ; 10(5): e27054, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38562500

ABSTRACT

Breast cancer is among the cancer types with the highest numbers of new cases. The study of this disease from a microscopic perspective has been a prominent research topic. Previous studies have shown that microRNAs (miRNAs) are closely linked to chromosomal instability (CIN). Correctly predicting CIN status from miRNAs can help to improve the survival of breast cancer patients. In this study, a joint global and local interpretation method called GL_XGBoost is proposed for predicting CIN status in breast cancer. GL_XGBoost integrates the eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanation (SHAP) methods. XGBoost is used to predict CIN status from miRNA data, whereas SHAP is used to select miRNA features that have strong relationships with CIN. Furthermore, SHAP's rich visualization strategies enhance the interpretability of the entire model at the global and local levels. The performance of GL_XGBoost is validated on the TCGA-BRCA dataset, and it is shown to have an accuracy of 78.57% and an area under the curve value of 0.87. Rich visual analysis is used to explain the relationships between miRNAs and CIN status from different perspectives. Our study demonstrates an intuitive way of exploring the relationship between CIN and cancer from a microscopic perspective.

7.
Arch Biochem Biophys ; 756: 110009, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642631

ABSTRACT

BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.

8.
Immunol Invest ; : 1-22, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622991

ABSTRACT

Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.

9.
Adv Sci (Weinh) ; : e2307754, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605600

ABSTRACT

Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.

10.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632547

ABSTRACT

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Pulmonary Arterial Hypertension , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Familial Primary Pulmonary Hypertension , Choline
11.
J Colloid Interface Sci ; 666: 88-100, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583213

ABSTRACT

K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.

12.
Front Microbiol ; 15: 1379382, 2024.
Article in English | MEDLINE | ID: mdl-38585689

ABSTRACT

The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.

13.
Diabetologia ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676722

ABSTRACT

AIMS: Lactate accumulation is reported to be a biomarker for diabetic nephropathy progression. Lactate drives lysine lactylation, a newly discovered post-translational modification that is involved in the pathogenesis of cancers and metabolic and inflammatory disease. Here, we aimed to determine whether lysine lactylation is involved in the pathogenesis of diabetic nephropathy. METHODS: Renal biopsy samples from individuals with diabetic nephropathy (n=22) and control samples from individuals without diabetes and kidney disease (n=9) were obtained from the First Affiliated Hospital of Zhengzhou University for immunohistochemical staining. In addition, we carried out global lactylome profiling of kidney tissues from db/m and db/db mice using LC-MS/MS. Furthermore, we assessed the role of lysine lactylation and acyl-CoA synthetase family member 2 (ACSF2) in mitochondrial function in human proximal tubular epithelial cells (HK-2). RESULTS: The expression level of lysine lactylation was significantly increased in the kidneys of individuals with diabetes as well as in kidneys from db/db mice. Integrative lactylome analysis of the kidneys of db/db and db/m mice identified 165 upregulated proteins and 17 downregulated proteins, with an increase in 356 lysine lactylation sites and a decrease in 22 lysine lactylation sites decreased. Subcellular localisation analysis revealed that most lactylated proteins were found in the mitochondria (115 proteins, 269 sites). We further found that lactylation of the K182 site in ACSF2 contributes to mitochondrial dysfunction. Finally, the expression of ACSF2 was notably increased in the kidneys of db/db mice and individuals with diabetic nephropathy. CONCLUSIONS: Our study strongly suggests that lysine lactylation and ACSF2 are mediators of mitochondrial dysfunction and may contribute to the progression of diabetic nephropathy. DATA AVAILABILITY: The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database ( https://proteomecentral.proteomexchange.org ) via the iProX partner repository with the dataset identifier PXD050070.

14.
Respir Med ; 227: 107643, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657739

ABSTRACT

BACKGROUND: Emerging evidence has shown that the blood urea nitrogen to serum albumin ratio (BAR) is associated with the severity and prognosis of heart failure. However, its role in idiopathic pulmonary arterial hypertension (IPAH) remains unclear. This study investigated the associations between BAR and functional status, echocardiographic findings, hemodynamics, and long-term outcomes among patients with IPAH. METHODS: This study included consecutive patients who underwent right heart catheterization (RHC) and were diagnosed with IPAH between January 2013 and January 2018 at Fuwai Hospital. The primary outcome was the worsening of clinical symptoms. Spearman correlation coefficients were used to evaluate the association between the BAR and established markers of IPAH severity. Receiver operating characteristic (ROC) curve analysis was used to determine BAR's optimal cut-off and predictive performance. Kaplan-Meier analysis and Cox proportional hazard models assessed the relationship between BAR and clinical worsening. RESULTS: A total of 340 patients with IPAH were included in this study. BAR correlated with well-validated variables that reflected the severity of IPAH, such as World Health Organization functional class, 6-min walk distance, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, mixed venous oxygen saturation, and cardiac index. Kaplan-Meier curves indicated that patients with BAR>3.80 had a significantly higher clinical worsening rate (log-rank test, P < 0.001) than those with BAR≤3.80. Multivariate Cox analysis showed that BAR could independently predict clinical worsening [hazard ratio(HR):2.642, 95 % confidence interval (CI):1.659-4.208, P < 0.001]. In addition, BAR provided additional predictive value for the European Society of Cardiology (ESC)/European Respiratory Society (ERS) risk assessment score. CONCLUSIONS: BAR reflects disease severity and is independently associated with the prognosis of patients with IPAH.

15.
Sci Total Environ ; 930: 172400, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631634

ABSTRACT

Ensuring agricultural security and preserving the health of wetland ecosystems are crucial concerns facing northeast China. However, the adverse effects of environmental pollution, especially nitrogen (N), caused by prolonged agricultural development on the health of marsh wetlands cannot be systematically recognized. To address this issue, an 18-year trial with four different levels of N application was carried out in a typical area of the Northeast region: 0, 6, 12, and 24 gN·m-2·a-1 (referred to as CK, N6, N12, and N24, respectively) to investigate changes in wetland ecological functioning. The results showed that long-term N input significantly enhanced soil N availability. High-level of N addition (N24) significantly reduced soil bacterial richness in October, while fungal diversity was significantly higher in June than in October for both control and N6 treatments. The main environmental factors affecting microorganisms in June were TN, NH4+, and EC, while bacterial and fungal communities were influenced by TN and Leaf Area Index (LAI), respectively, in October. It was found that the AN16S gene was significantly higher in June than in October, indicating that summer is the critical time for N removal in the wetland. N addition significantly reduced the abundance of the NIFH gene and decreased the N fixation potential of the wetland. In June, low and medium levels of N inputs promoted denitrification processes in the wetland and elevated the wetland N2O emission potential. The abundance of NARG, NIRK, and NOSZ genes decreased significantly in October compared to June, indicating a decrease in the wetland N2O emission potential. Additionally, it was observed that soil methanotrophs were positively affected by NH4+ and TN in October, thereby reducing the wetland CH4 emission potential. Our research provides a systematic understanding of the impact of agricultural N pollution on marsh wetlands, which can inform strategies to protect wetland health.

16.
J Transl Med ; 22(1): 397, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684996

ABSTRACT

BACKGROUND: Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS: A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS: Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION: Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.


Subject(s)
Artificial Intelligence , Diabetic Nephropathies , Kidney Glomerulus , Humans , Diabetic Nephropathies/pathology , Diabetic Nephropathies/classification , Kidney Glomerulus/pathology , Male , Female , Middle Aged , Neural Networks, Computer
17.
Asian J Pharm Sci ; 19(1): 100885, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38434718

ABSTRACT

Amultifunctional liposomal polydopamine nanoparticle (MPM@Lipo) was designed in this study, to combine chemotherapy, photothermal therapy (PTT) and oxygen enrichment to clear hyperproliferating inflammatory cells and improve the hypoxic microenvironment for rheumatoid arthritis (RA) treatment. MPM@Lipo significantly scavenged intracellular reactive oxygen species and relieved joint hypoxia, thus contributing to the repolarization of M1 macrophages into M2 phenotype. Furthermore, MPM@Lipo could accumulate at inflammatory joints, inhibit the production of inflammatory factors, and protect cartilage in vivo, effectively alleviating RA progression in a rat adjuvant-induced arthritis model. Moreover, upon laser irradiation, MPM@Lipo can elevate the temperature to not only significantly obliterate excessively proliferating inflammatory cells but also accelerate the production of methotrexate and oxygen, resulting in excellent RA treatment effects. Overall, the use of synergistic chemotherapy/PTT/oxygen enrichment therapy to treat RA is a powerful potential strategy.

18.
Chemistry ; : e202304338, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538540

ABSTRACT

Glioma, the most common primary brain tumor, is highly invasive and grows rapidly. As such, the survival of glioma patients is relatively short, highlighting the vital importance of timely diagnosis and treatment of glioma. However, the blood brain barrier (BBB) and the non-targeting delivery systems of contrast agents and drugs greatly hinder the effective glioma imaging and therapy. Fortunately, in recent years, investigators have constructed various biomimetic delivery platforms utilizing the exceptional advantages of biomimetic nanocomposites, such as immune evasion, homologous targeting ability, and BBB penetrating ability, to achieve efficient and precise delivery of substances to glioma sites for improved diagnosis and treatment. In this concept, we present the application of these biomimetic nanocomposites in fluorescence imaging (FI), magnetic resonance imaging (MRI), and multi-modal imaging, as well as in chemotherapy, phototherapy, and combined therapy for glioma. Lastly, we provide our perspective on this research field.

19.
Clin Transl Sci ; 17(3): e13751, 2024 03.
Article in English | MEDLINE | ID: mdl-38450983

ABSTRACT

Inflammation contributes to development of idiopathic pulmonary arterial hypertension (IPAH), and tumor biomarkers can reflect inflammatory and immune status. We aimed to determine the value of tumor biomarkers in IPAH comprehensively. We enrolled 315 patients with IPAH retrospectively. Tumor biomarkers were correlated with established indicators of pulmonary hypertension severity. Multivariable Cox regression found that AFP (hazard ratio [HR]: 1.587, 95% confidence interval [CI]: 1.014-2.482, p = 0.043) and CA125 (HR: 2.018, 95% CI: 1.163-3.504, p = 0.013) could independently predict prognosis of IPAH. The changes of AFP over time were associated with prognosis of patients, each 1 ng/mL increase in AFP was associated with 5.4% increased risk of clinical worsening (HR: 1.054, 95% CI: 1.001-1.110, p = 0.046), enabling detection of disease progression. Moreover, beyond well-validated PH biomarkers, CA125 was still of prognostic value in the low-risk patients (HR: 1.014, 95% CI: 1.004-1.024, p = 0.004), allowing for more accurate risk stratification and prediction of disease outcomes. AFP and CA125 can serve for prognosis prediction, risk stratification, and dynamic monitor in patients with IPAH.


Subject(s)
Biomarkers, Tumor , alpha-Fetoproteins , Humans , Familial Primary Pulmonary Hypertension , Retrospective Studies , Prognosis
20.
Chem Sci ; 15(13): 4824-4832, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550676

ABSTRACT

Epilepsy is considered one of the most prevalent neurological disorders, yet the precise mechanisms underlying its pathogenesis remain inadequately elucidated. Emerging evidence implicates endogenous sulfur dioxide (SO2) in the brain as playing a significant role in epilepsy and associated neuronal apoptosis. Consequently, tracking the dynamic fluctuations in the levels of SO2 and its derivatives (SO32-/HSO3-) provides valuable insights into the molecular mechanisms underlying epilepsy, with potential implications for its diagnosis and therapeutic intervention. Nonetheless, the absence of reversible in vivo detection tools constitutes a formidable obstacle in the real-time monitoring of SO2 dynamics in the brain. In response to this challenge, we propose a novel approach involving a photoelectrochemical (PEC) microsensor capable of reversibly detecting SO2. This microsensor leverages a reversibly recognizing dye for SO2 and upconversion nanoparticles as the modulator of the excitation source for the photoactive material, enabling modulation of the photocurrent by the target. The reversible output of PEC signals allows for the monitoring of SO2 levels in real time in the brains of epileptic mice. This study reveals the patterns of SO2 level changes during epilepsy and provides insights into the neuroprotective mechanism of exogenous SO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...